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Today’s lecture

« Audio Features

. How we hear sound

- How we represent sound
— In the context of this class

L LLINOIS

NNNNNNNNNNNNNNNNNNNNNNNNNNN -CHAMPAIGN




Why features?

- Features are a very important area
— Bad features make problems unsolvable
— Good features make problems trivial

- Learning how to pick features is the key
— So is understanding what they mean
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A simple example

- Compare two numbers:

r,y = {3,3} r,z = {3,100}
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A simple example

- Compare two numbers:
lo—y|=0  Jo—z|=07
— x,y similar but 2,z not so much

- Best way to represent a number is itself!
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Moving up a level

- Compare two vectors:

X,y X, Z
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Moving up a level

- Compare two vectors:
/x,y = 0.03 rad /x,7z = 0.7 rad
Hx - y‘ — (.16 Hx - zH —1.07

— Simply generalizing numbers concept
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Moving up again

- Compare two longer vectors:
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Look similar but are not!

« Oops! Zx,y = 1.57 rad, ‘x — yH = 7.64
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How about this?

« Are these two vectors the same?

0.8
0.6
0.4
0.2

-02}
-0.4}
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0

-0.5f
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— Not if you look at their norm or afigle ...
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Data norms won't get you far!

« You need to articulate what matters
— You need to know what matters

- Features are the means to do so

« Let’'s examine what matters to our ears
— QOur bodies sorta know best
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Hearing

 Sounds and hearing

- Human hearing aspects
— Physiology and psychology

« Lessons learned
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The hardware

(outer/middle ear)

« The pinna (auricle)
— Aids sound collection
— Does directional filtering
— Holds earrings, etc ...

« The ear canal
— About 25mm x 7mm
— Amplifies sound at ~3kHz by ~10dB
— Helps clarify a lot of sounds!

« Eardrum
— End of middle ear, start of inner ear
— Transmits sound as a vibration to the inner ear
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More hardware

(inner ear)

- Eardrum (tympanum)

— Excites the ossicles (ear bones) Ossicles

« Ossicles
— Malleus (hammer), incus (anvil), stapes (stirrup)
— Transfers vibrations from ear drum to the oval window
— Amplify sound by ~14dB (peak at ~1kHz)
— Muscles connected to ossicles control the acoustic

Oval window

reflex (damping in presence of loud sounds) /
Audit
« The oval window :er.voery

— Transfers vibrations to the cochlea
Cochlea
« Eustachian tube

— Used for pressure equalization Ear drum

Eustachian
tube
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The cochlea

« The“A/D converter”

— Translates oval window vibrations to a
neural signal

—  Fluid filled with the basilar membrane in
the middle

— Each section of the basilar membrane
resonates with a different sound
frequency

— Vibrations of the basilar membrane
move sections of hair cells which send
off neural signals to the brain

- The cochlea acts like the equalizer
display in your stereo

— Frequency domain decomposition

- Neural signals from the hair cells go to
the auditory nerve
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Masking & Critical bands

When two different sounds excite the same
section of the basilar membrane one is masked
This is observed at the micro-level

- E.g.two tones at 150Hz and 170Hz, if one tone is
loud enough the other will be inaudible

— Atone can also hide a noise band when loud
enough

There are 24 distinct bands throughout the
cochlea

— a.k.a critical bands

- Simultaneous excitation on a band by multiple
sources results in a single source percept

There is also some temporal masking
- Preceding sounds mask what's next

This is a feature which is taken into advantage
by a lot of audio compression

— Throws away stuff you won’t hear due to masking
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(200-600 Hz)




The neural pathways

« Aseries of neural stops
. Ears
« Cochlear nuclei ; ;
— Prepping/distribution of neural data from cochlea
«  Superior Olivary Complex Cochieas
— Coincidence detection across ear signals
— Localization functions Cochiear
i ] nuclei
« Inferior Colliculus
— Last place where we have most original data Superior
— Probably initiates first auditory images in brain olivary
. g complex
- Medial Geniculate Body
— Relays various sound features (frequency, intensity, Inferior
etc) to the auditory cortex colliculus
« Auditory Cortex Medial
— Reasoning, recognition, identification, etc geniculate body
— High-level processing Auditory
cortex
v
2 Stream of
® conciousness ...
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The limits of hearing

. Freq uency g Pain!
— 20Hz to 20kHz (upper limit decreases é
with age/trauma) g |
~ Infrasound (< 20Hz) can be felt through g 3’ e SISO
skin, also as events 28 N o smeeen —Masie=s,
— Ultrasound (> 20kHz) can be £y =
“emotionally” perceived (discomfort, S R
nausea, etc) 5
« Loudness g Inaudibility " ]
- Low |imit is 2x1 0-10 atm 16 315 53 125 250 5000 1000 2000 4000 8000 16000
~ 0dB SPL to 130dB SPL (but also et
frequency dependent) |
A dynamic range of 3x10°to 1! ;r-(;,;flser?éi;i,nzgiv
— 130dB SPL threshold of pain righ can you hear?
— 194dB SPL is definition of a shock

wave, sounds stops!
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Perception of loudness

. . . - 'I'hrc;holll o'f ;;ailnI [
- Loudness is subjective - ] L 1o |~
. . - b - ”0\"\ d _,/
— Perceived loudness changes with e umglgsiity
W e 0 P -
frequency e o A
M " H "o E:'\.___h '.\\__// AT
— Perception of “twice as loud” is not _ [ SS=EHES 0 .
lly that! g NNy o T
rea y a H _‘:{60 \E\\\\\:\ ] 60 ~—___ //
. 5 NN T — > A
— Ditto for equal loudness E \t::S%E: 2 [T /,//
Q N~ - w0 TV
- Fletcher-Munson curves v %Si\ 0 g/
~ Equal loudness perception curves 2 1111/ ‘\‘Q:\ s pet v
through frequenC|eS ) I'hreshold of audibility \\\ ""'0\ // P
o
« Just noticeable difference is about " - — o
1dB SLP Frequency (Hz)
40
« 1kHz to 5kHz are the loudest heard a5 1
frequencies g 7 SO A
. e Y <
— What the ear canal and ossicles g 2 // =1 T
amplify! g /1//’:; e veo
. Low limit shifts up with age! % s E%Tg:” —
] I L L I N O I S D1000 2EIIEID 3D£rﬂequenc:0[:021 5000 6000




Perception of pitch

e Pitch is another subjective
(and arbitrary) measure

e Perception of pitch doubling
doesn’t imply doubling of Hz

— Mel scale is the perceptual
pitch scale

— Twice as many Mels
correspond to a perceived
pitch doubling

e Musically useful range varies
from 30Hz to 4kHz

e Just noticeable difference is
about 0.5% of frequency

— Varies with training though
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“Pitch is that attribute of
auditory sensation in terms
of which sounds may be

ordered from low to high”
- American National Standards Institute




Perception of timbre

- Timbre is what distinguishes sounds
outside of loudness & pitch

— Another bogus ANSI description
- Timbre is dynamical and can have

many facets which can often include
pitch and loudness variations

— E.g. music instrument identification is
guided largely by intensity fluctuations
through time

- There is not a coherent body of

Gray'’s timbre space of

literature examining human timbre musical instruments
perception
— But there is a huge bibliography on ~
computational timbre perception!

Examples of successive timbre
changes. Loudness and pitch
are constant
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So how to we use all that?

- All these processes are meaningful
— They encapsulate statistics of sounds
— They suggest features to use

- To make machines that cater to our needs
— We need to learn from our perception
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A lesson from the cochlea

. Sounds are not vectors

- Sounds are “frequency
ensembles”

Y
. That'’s the “perceptual

feature” we care about
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Like this!

— But how do we get this?
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The “simplest” sound

- Sinusoids are special
— Simplest waveform
— Anisolated frequency

« Asinusoid has three
parameters

— Frequency, amplitude & phase
° S( t) . a( t) sin( f t 4 (}9) Making a square wave with sines

. This simplicity makes
sinusoids an excellent

building block for most of
time series

Hele
HeleE
Hil e
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Frequency domain representation

- Time series can be decomposed 1 Time series o Spectrum
in terms of “sinusoid presence”
— See how many sinusoids youcan  ° 10
add up to get to a good |
approximation o 50 100 % 20 40 60
— Informally called the spectrum 1 °
4
« No temporal information in this 0 .
representation, only frequency LU
|nformat|on 20 40 60 80 100 00 20 40 60
1 2
— So asine with a changing /
frequency is a smeared spike 0 1
- Not that great of a representation | . |
for dynamically changing sounds  ° 50 100 o 20 40 60
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Time/frequency representation

« Ma ny nam es/varieties Time series Time/Frequency

— Spectrogram, sonogram, ‘
periodogram, ... )
- Atime ordered series of
1 A
50 10

frequency compositions "o
— (Can help show how things move
in both time and frequency
- The most useful representation

SO far! - 20 40 60 80 100 0 100 200 300
— Reveals information about the 1/ '
frequency content without
sacrificing the time info

Frequency

0 0 100 200 300

1 Time

0.5

o
Frequency

o
Frequency

0 50 100 0 100 200 300 400
Time

L LLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




A real example ¢

* Time domain

0.5 K |
— We can see the events 5 H“W
3 0 i TP
— We don’t know how they 2
sound like though! 0.5 |
-1 L 1 | ) 1
0 0.5 1 15 o o5 3
Spectrum 2

— We can see a lot of bass
and few middle freqgs

— But where in time are they?

0.5

Frequency domain

» Spectrogram

— We can “see” each 8000
individual sound

— And we know how it
sounds like!

6000 f i

4000 F %

Frequency

2000f

L LLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




The Discrete Fourier Transform

The Fourier matrix (real part)

- So how do we get from
time domain to frequency
domain?

— Itis a matrix multiplication (a
rotation in fact)

« The Fourier matrix is
square, orthogonal and has
complex-valued elements

1 @ 1 k2T
"N = (COSJ

li
||

" I

N AN

. Multiply a vectorized time-
series with the Fourier
matrix and voila!

F,, = + 1sIn
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How does the DFT work?

 Multiplying with the Fourier matrix

— We dot product each Fourier row vector |
with the input

— If two vectors point the same way their |
dot product is maximized
- Each Fourier row picks out a single
sinusoid from the signal
— Infact a complex sinusoid

— Since all the Fourier sinusoids are
orthogonal there is no overlap

« The resulting vector contains how
much of each Fourier sinusoid the
original vector had in it
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The DFT in a little more detail

The DFT features complex numbers
— Doesn’t have to, but it is convenient for
other things
The DFT result for real signals is
conjugate symmetric

— The middle value is the highest
frequency (Nyquist)

—  Working towards the edges we traverse
all frequencies downwards

— The two sides are mutually conjugate
complex numbers

The interesting parts of the DFT are the
magnitude and the phase

— Abs(F)=||F||

— Arg(F)=4F
To go back we apply the DFT again
(with some scaling)
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Size of a DFT

- The bigger the DFT
input the more
frequency resolution

— But the more data we
need!

. Zero padding helps

— Stuff a lot of zeros at the

end of the input to make
up for few data

— Butwe don't really
infuse any more
information we just
make prettier plots
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From the DFT to a spectrogram

- The spectrogram is a series of consecutive
magnitude DFTs on a signal

— This series is taken off consecutive
segments of the input

- Itis best to taper the ends of the segments

— This reduces “fake” broadband noise
estimates

 Itis wise to make the segments overlap
— Due to windowing
- The parameters to use are
— The DFT size
— The overlap amount
— The windowing function
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Time series of
magnitude spectra

IEEE
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l Looks nicer as an image

Spectrogram




Why window?

Discontinuities at ends
cause noise

— Start and end point must
taper to zero

Windowing
— Eliminates the sharp edges
that cause broadband noise

Overlap

— Since we have windowed
we need to take
overlapping segments to
make up for the attenuated
parts of the input
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Time/Frequency tradeoff

- Heisenberg’s uncertainty principle

— We can't accurately know both the
frequency and the time position of a
wave

— Alsoin particle physics with speed

Frequency

0 2000 4000 6000 8000 10000 12000 14000

and position of a particle
- Spectrogram problems :
— Big DFTs sacrifice temporal resolution & 8
— Small DFTs have |OU5y frequency % 2oloo 4000 6000 8000 10000 12000 14000
Time
resolution - —
esolutio 'y 3 e
- We can use a denser overlap to WE=FN B =
com pensatg - % e
— Ok solution, not great % 2000 4000 6000 8000 10000 12000 1400(
Time
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The Fast Fourier Transform (FFT)

. .. . The Fourier matrix, N = 32
« The Fourier matrix is special

— Many repeating values
— Unique repeating structure
- We can decompose a Fourier transform to
two Fourier transforms of half the size
— Also includes some twiddling with the data

— Two Fourier smaller transforms are faster
than one big one

—  We keep decomposing it until we have a
very small DFT
« This results into a really fast algorithm that
has driven communications forward! s0— N

. . . . $2 — Length-4 P S
— The constraint is that the transform size is O R B\

e 2

: ':::II
)

m |
I.I.I
|l

Knns

: se— s 5
best if a power of two so that we can i
decompose it repeatedly sa— Lengtna :jg;jﬁz

85 —

j2ng/8
§7 —| &1

P

Example FFT, N = 8
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Emulating the cochlea

. Using the time/frequency domain

Take successive ol 1
Fourier transforms o4} |

0.2 i

| : ©

Keep their ool |
magnitude -04f

-0.6
Stack them in time ?

Now you can visually
compare sounds!

Frequency

77 102 128 154 179 205
Time (1k samples)

51

26

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\



Back to our example

x 10*
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Corresponding spectrograms

Spectrogram
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. 200
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5 10 15 20 25 30 35 40 45 50 55
Time
Spectrogram

500
400
300
. 200

100




A lesson from loudness perception

- We don't perceive loudness linearly

« How much louder is the second “test”?

©

- The magnitude we plot should be
logarithmic, not linear
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Log spectrograms

Log spectrogram

500
400
300
200
100
5 10 15 20 25 30 35 40 45 50 55
Time
Log spectrogram
500
400
300
200
100
35 40 45 50 55
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A lesson from pitch perception

 Frequencies are not “linear” =

3000

— Perceived scale is called mel

2500

2000 -

. Use that spacing instead
— i.e. warp the frequency axis
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“Mel spectra”
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Log mel spectrogram

Time

Log mel spectrogram




One more trick

- Mel cepstra

— Smooth the log mel spectra using one more
frequency transform (the DCT)

Mel cepstra

1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 55
Time

Mel cepstra
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Adding some temporal info

. Deltas and delta-deltas
— In sounds order is important
— Using “delta features” we pay attention to change

Mel cepstra

35
30

= 25

o}

£ 20

[0}

8 15
10
5
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What more is there?

- Tons!
— Spectral features
— Waveform features
— Higher level features
— Perceptual parameter features
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Sound recap

Go to time/frequency domain
— We do so in the cochlea

Frequencies are not linear
— We perceive them in another scale

Amplitude is not linear either
— Use log scale instead

Resulting features are used a lot
— Further minor tweaks exist (more later)
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Next lecture

» Principal Component Analysis

- How to find features automatically

- How to “compress” data without info loss
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